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In quantum field theory (QFT) we often need to deal with functionals, the most common
of which is probably the generating functional, Z[J ]. This being physics, however, we are
also frequently interested in analyzing the symmetries of a system and extracting information
from the demand that a theory is invariant under some transformation. Indeed, this is
essentially the idea behind Noether’s theorem.

But as we analyze symmetries, at the very least the language we use can become a bit
muddled. Since symmetries are so important, it’s worth taking some time to think carefully
about what we are doing, and see if we can’t perform the same analyses in more controlled
environments in which we are able to compute everything we’re interested in directly instead
of by exploiting symmetry.
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1 Relations Between Functions

Suppose we have some function f : R → R and transformation Tα : R → R parametrized
by α. We will choose the parametrization of T such that T0 is the identity transformation
and we will suppose that f satisfies f(Tα(x)) = f(x) + ∆f(x, α) for all x and all1 α. Here
∆f(x, α) is just some known function.

Since this relation holds ∀α, x, we are free to take derivatives w.r.t. either x or α:

f ′(Tα(x))
∂Tα
∂α

=
∂

∂α
∆f(x, α), f ′(Tα(x))

∂Tα
∂x

= f ′(x) +
∂

∂x
∆f(x, α). (1.1)

Evaluating at α = 0 so T is the identity, the first of these relations becomes

f ′(x)
∂

∂α

∣∣∣∣
0

Tα(x) =
∂

∂α

∣∣∣∣
0

∆f(x, α). (1.2)

This equation gives us a differential equation satisfied by any function which obeys the
relation f(Ta(x)) = f(x) + ∆f(x, α). In the case ∆f(x, α) = 0, we would say that this is
a differential equation for functions invariant under the transformation Tα, at least for α
sufficiently close to zero.

Consider for example Tα(x) = x+α and ∆f(x, α) = 2αx+α2. With these, (1.2) implies
the differential equation

f ′(x) = 2x (1.3)

which we know is solved by f(x) = x2 +C for any constant C. We can also check that this
function indeed satisfies f(x+α) = f(x)+(2αx+ α2). Though it should be noted that the α
being sufficiently close to zero is actually very important here. For example, if we had chosen
∆f(x, α) = 2αx + 10α2, (1.2) would have produced precisely the same differential equation
but the original equation f(Tα(x)) = f(x) + ∆f(x, α) certainly wouldn’t be satisfied.

This brings us to an interesting point. Though (1.2) is easy to write down and is certainly
a necessary condition, it is not a sufficient one. Instead, we would need to go back to (1.1)
and evaluate the first equation at x = T−1

α (y):

f ′(y)
∂Tα
∂α

∣∣∣∣
T−1
α (y)

=
∂

∂α
∆f(T−1

α (y), α) (1.4)

where the α derivative on the RHS is understood to act only on the second argument of
∆f . Writing this out explicitly for the example we had above, we find

f ′(x) = 2x+ 18α (1.5)

1It’s often good enough that f satisfies this relation for only α in an open neighborhood of zero and
similarly for x about some particular value.
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which clearly has solution
f(x) = x2 + 18αx+ C (1.6)

for some constant C. However, there is an important auxiliary assumption we used without
mentioning: ∂

∂α
f(x) = 0. The function we are looking for cannot depend on the transforma-

tion we apply to it. The power of (1.4) is that we may now state with confidence that does
not exist a function satisfying f(x+ α) = f(x) + 2αx+ 10α2.

Everything we have said thus far generalizes immediately to higher dimensional examples:
if f : Rn → Rm satisfies fa(Tα(x)) = fa(x)+∆fa(α,x) for a = 1, . . .m, then it follows that

∂T µα
∂α

∂

∂xµ

∣∣∣∣
Tα(x)

fa =
∂

∂α
∆fa(x, α). (1.7)

Hence,
∂T µα
∂α

∣∣∣∣
T−1
α (x)

∂

∂xµ
fa(x) =

∂

∂α
∆fa(T−1

α (x), α). (1.8)

Indeed, if we define

vα =
∂T µα
∂α

∣∣∣∣
T−1
α (x)

∂

∂xµ
, Qa

α =
∂

∂α
∆fa(T−1

α (x), α) (1.9)

then the variance condition may be written

vα(fa) = Qa
α, subject to

∂

∂α
f(x) = 0, (1.10)

so we have, in fact, derived in the process the generator of the transformation Tα and in
the case of invariance, so ∆f = 0, we see that the generator of the transformation Tα must
annihilate the invariant function.

An important point to note here is that (1.10) remains valid for all α and x, meaning we
could continue to differentiate it with respect to either α or x to obtain additional identities
satisfied by the function f .

Finally, we note that, though the second equation of (1.1) is satisfied by f , it is generally
less useful because we are unable to isolate f ′(x) unless we take α = 0, but when we do
this the identity only tells us that ∂

∂x
∆f(x, 0) = 0 which is already implied by the identity

∆f(x, 0) = 0. Since this equation does not rely on the continuity of α, however, there stands
some hope that it might tell us something about discrete symmetries which are notoriously
difficult to analyze.
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2 Integral Identities

Here we will specialize to a particular kind of function f , namely those which are given by an
integral whose bounds or integrand may depend on some parameters which we will continue
to call xµ (these are not necessarily valued in the same space we are integrating over). That
is2,

f(x) =

∫
Σ

L(z,x)dz. (2.1)

Our general analysis still holds, so if this function obeys f(Tα(x)) = f(x) + ∆f(x, α), then
we may conclude (1.10). It is the common use of integral expressions as generating functions
which makes considering them specifically worthwhile. In fact, this is the same reason they
tend to appear in physics as well.

First, however, let’s consider the example3 f(x) =
∫∞

0
e−xzdz. We are able to integrate

this function explicitly to find f(x) = 1
x

and we can see that this function generates the
integrals of polynomials times the exponential (up to a sign):

f(1) =

∫ ∞
0

e−zdz, f ′(1) =−
∫ ∞

0

ze−zdz, f ′′(1) =

∫ ∞
0

z2e−zdz,

f (3)(1) = −
∫ ∞

0

z3e−zdz · · · f (n)(1) = (−1)n
∫ ∞

0

zne−z.

(2.2)

Now, since we already know f(x) = 1
x
, we may directly compute all of these integrals by

taking sufficiently many derivatives. But generically, integrals are very hard to do and we
may not know how to compute f(x) directly. Instead, it may well be good enough that we
find a set of identities relating these integrals to each other. This way, we might be able to
say something interesting without actually needing to have the explicit expression for any of
these integrals.

Let’s see what a simple identity on f might be able to buy us. Consider a rescaling of
the parameter x:

f(λx) =

∫ ∞
0

e−λxzdz =
1

λ

∫ ∞
0

e−xzdz =
1

λ
f(x) = f(x) +

(
1

λ
− 1

)
f(x). (2.3)

2For now we take the integration region Σ to be a constant with respect to the parameters xµ, but this
could easily be generalized via the generalization of Leibniz’s rule.

3Though it is typical to call the parameter of this generating function α and the integration variable x,
we abandon this notation to remain consistent with the notation used elsewhere in this document.
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Writing4 λ = 1 +α, we see that Tα(x) = (1 +α)x = x+αx. Furthermore, this tells us that

∆f(x, α) =

(
1

1 + α
− 1

)
f(x) = − α

1 + α
f(x). (2.4)

Since our goal is to apply (1.10), we will first compute

∂

∂α
∆f(x, α) = − 1

(1 + α)2
f(x) (2.5)

and so

Qα =
∂

∂α
∆f(T−1

α (x), α) =
−1

(1 + α)2
f

(
1

λ
x

)
=

−λ
(1 + α)2

f(x) =
−1

1 + α
f(x) (2.6)

where we have used again the identity satisfied by f(x). Next, we compute

∂Tα
∂α

= x (2.7)

so
∂Tα
∂α

∣∣∣∣
T−1(x)

=
1

λ
x =

x

1 + α
. (2.8)

Now, our identity tells us that

x

1 + α
f ′(x) =

−1

1 + α
f(x). (2.9)

The α dependence cancels nicely (so we don’t need to worry about the ∂
∂α
f = 0 condition)

and we are left with the identity
xf ′(x) = −f(x). (2.10)

Unfortunately, there being no more α dependence means we cannot see how additional α
derivatives would play with the identity, but we can start taking x derivatives. Applying an
arbitrary number of derivatives5, we would find the identity

nf (n)(x) + xf (n+1) = −f (n)(x) =⇒ (n+ 1)f (n)(1) + f (n+1)(1) = 0 (2.11)

4We shift the transformation parameter so the transformation can be the identity when the parameter is
zero.

5At most one derivative can hit the x, the rest must hit the f(x). Out of n derivatives applied, there are
n ways to choose which of those derivatives should hit the x.

5



which holds for all integers n > 0. So, without needing to know anything about the values
of the integrals (2.2), we have found a collection of relationships between them. In this
particular case, the relationship happens to be a recurrence relation giving the (n + 1)st of
these integrals in terms of the nth and the recurrence happens to be simple enough to solve
by f (n)(1) = n!f(1) so if we could only compute f(1), we could immediately know the values
of all the other integrals. And, in fact, f(1) = 1, which if we recall that the Gamma function
was given by Γ[n+ 1] =

∫∞
0
zne−zdz = n! should be obvious in retrospect.

We could also consider an example in which the integral is actually invariant under the
changes in the parameter as well so ∆f = 0. A simple way to generate such examples in
integrals would be to consider a change of variables that includes a parameter. For example,
consider

f(x) =

∫ ∞
−∞

e−z
2

dz. (2.12)

This function clearly does not depend on x since x does not actually appear in the integral.
But if we apply a change of variables, so for example, z′ = z − x, then

f(x) =

∫ ∞
−∞

e−(z+x)2dz. (2.13)

This function is invariant under any transformation of x that we care to write down, but
we can consider as an example Tα(x) = x + α. Under this transformation, we clearly have
f(Tα(x)) = f(x) so ∆f = 0.

For this example,
∂Tα
∂α

= 1 =⇒ ∂Tα
∂α

∣∣∣∣
T−1
α (x)

= 1. (2.14)

Hence, we find that (1.10) tells us
d

dx
f(x) = 0 (2.15)

which we probably could have guessed, but which we can see also follows nicely from the
general framework we have built. As with the previous example, we note that this identity
implies relations between many integrals. If we were to define the integrals

I0 =

∫ ∞
−∞

e−z
2

dz, I1 =

∫ ∞
−∞

ze−z
2

dz, . . . In =

∫ ∞
−∞

zne−z
2

dz, (2.16)

then we may note that

f(0) = I0, f ′(0) = −2I1, f ′′(0) = −2I0 + 4I2, f (3)(0) = 12I1 − 8I3, . . . (2.17)
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As with the previous example, the identities between these integrals allow us to deduce
information about them without needing to know explicitly the values of any of them. For
example, we can already see that I1 and I3 are zero, which we could have also noted from
the asymmetry of their integrands.

A key take-away from these two examples is that it does not even matter whether the
parameters x are real parameters in the integral or simply artifacts of a bad coordinate
transformation. We can obtain identities in either case.

3 Generalization to Functionals

Here we will derive the generalization of (1.10) to functionals. That is, functions F [φ] which
take as input some functions φ rather than just some set of parameters x. Formally, very
little changes, but it will be a useful exercise to derive the master identity generalizing (1.10)
explicitly.

We consider here a transformation Tα[φ] which maps functions φ into some other functions
and we again assume that both α ∈ R and T0 = id. Suppose now that we have a functional6

F [φ] which obeys F [Tα[φ]] = F [φ] + ∆F [φ;α] for some known functional ∆F [φ;α].
We begin as we did before by differentiating with respect to α and applying the functional

chain rule7: ∫
dx
∂Tα(x)

∂α

∣∣∣∣
φ

δ

δφ(x)

∣∣∣∣
Tα[φ]

F =
∂

∂α
∆F [φ;α]. (3.1)

Evaluating at T−1
α [φ], we now find∫

dx
∂Tα(x)

∂α

∣∣∣∣
T−1
α [φ]

δ

δφ(x)
F [φ] =

∂

∂α
∆F [T−1

α [φ];α]. (3.2)

Defining

vα =

∫
dx
∂Tα(x)

∂α

∣∣∣∣
T−1
α [φ]

δ

δφ(x)
, Qα =

∂

∂α
∆F [T−1

α [φ];α] (3.3)

the above condition may be written in a form formally identical to (1.10):

vα(F ) = Qα,
∂

∂α
F = 0. (3.4)

6The functional F could have some internal indices as well, but unless they also transform under the
applied trasformation T , they will only be carried around in the background like the index a in (1.10). If
the indices of F do transform under T , this will only equate to a contribution to ∆F .

7The variable x will now be returned to its status as a coordinate, which we may also think of as taking
the place of the index µ in the mutlivariate case from earlier.
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4 Noether’s Theorem

To state and prove Noether’s theorem properly in the language we have developed here, we
should first set up exactly how we are thinking about mechanics. Once we do so, we will
find the Noether’s theorem follows quite easily from (3.4).

In general, we assume that we have some action functional S[φ]. We will assume that the
fields φ are valued in some configuration space Γ where Γ is the space of sections over some
bundle whose base space is space-time. However, there may be reasons why we would like
to restrict from the space of all sections down to a smaller collection C ⊆ Γ. For example, C
may be the space of sections which satisfy some boundary conditions. We will suppose that
there exists a good differential operator δ on Γ and that X(Γ) is the space of vector fields
over Γ with X(C) similarly defined8.

With this notion of a differential, we are free to compute the differential of the action,
δS[φ]. Next, let η ∈ X(C) be arbitrary. There exists a unique decomposition δS[φ] =
δSη[φ] + δSK [φ] such that δSK [φ] is in the kernel of ιη for all η and φ, that is ιηδSK [φ] = 0
∀η ∈ X(C), φ ∈ Γ, and if ιηδSη[φs] = 0 ∀η ∈ X(C) and fixed φs ∈ C, then δSη[φs] = 0.

In this language, the equations of motion take the form ιηδS[φ] = 0 for all η ∈ X(C).
Solutions φs of this functional equation clearly imply based on the above discussion that
ιηδSη[φs] = 0 ∀η. Now, if Tα is some transformation on the configuration space and the action
satisfies S[Tα[φ]] = S[φ] + ∆S[φ;α], then based on our general discussion in the previous
section, S must satisfy (3.4). But if we rewrite the action of vα on S as a contraction of vα
with δS, then we find on the equations of motion

Qα[φs] = vα(S)[φs] = ιvδS[φs] = ιvδSK [φs]. (4.1)

This is the content of Noether’s theorem.

5 Special Cases of Noether’s Theorem

Let’s consider first the special case where the action is a local functional depending on only
the value of the fields and their first derivatives, S[φ] =

∫
dxL(φ, ∂φ). We will take as

8Strictly speaking, I think we really need this to be the space of vector fields over Γ whose flows do not
leave C, but I imagine this probably follows from a set of boundary conditions being well-posed.
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definition that Tα represents a symmetry if ∆S[φ;α] is the integral of a total derivative.
And, if ∆S[φ;α] is the integral of a total derivative, then so is Q0. Say, Q0 =

∫
dx∂µK

µ for
some Kµ.

Next, note that the variation of this action is given by

δS[φ] =

∫
dx

[
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

]
δφ+

∫
dx∂µ

(
∂L

∂(∂µφ)
δφ

)
. (5.1)

Assuming we take as boundary conditions that the fields φ fall off “sufficiently fast” at
infinity, thus specifying C, we see that the two terms we have written down already factor
the differential into the sum δSη and δSK , the total derivative giving us δSK .

If we now take φs to be a solution to the equations of motion, then Noether’s theorem
tells us

ιv

∫
dx∂µ

(
∂L

∂(∂µφ)
δφ

)
=

∫
dx∂µK

µ. (5.2)

Writing Tα[φ](y) = φ(y) + αt[φ](y), we see that the vector field v0 becomes

v0 =

∫
dyt[φ](y)

δ

δφ(y)
(5.3)

and so ∫
dx∂µ

(
∂L

∂(∂µφ)
t[φ]

)
=

∫
dx∂µK

µ. (5.4)

But since no properties of the integration domain where used, we must also have equality
of the integrands. Thus,

∂µJ
µ ≡ ∂µ

(
∂L

∂(∂µφ)
t[φ]−Kµ

)
= 0 (5.5)

which is the standard statement of Noether’s theorem.
In the special case in which all of the fields φ are scalar-valued and the transformation

T is a result of a coordinate transformation generated by some vector field ξ, then t[φ] =
Lξφ = −ξµ∂µφ where, due to an unfortunate confluence of notation, Lξ is the Lie derivative
w.r.t. ξ. Then

∆S[φ;α] = −α
∫

dx

(
∂L
∂φ

ξµ∂µφ+
∂L

∂(∂νφ)
∂ν(ξ

µ∂µφ)

)
= −α

∫
dx

(
ξµ∂µL+

∂L
∂(∂νφ)

∂νξ
µ∂µφ

)
= −α

∫
dx

[
∂µ(ξµL) +

(
∂νξ

µ ∂L
∂(∂νφ)

∂µφ− ∂µξµL
)] (5.6)

9



where we have assumed that L does not depend directly on the coordinates. If we assume
that ξµ is a constant, then we find that

Kµ = −ξµL (5.7)

and so Noether’s theorem implies

Jµ = −ξνT µν = −ξν
(

∂L
∂(∂µφ)

∂νφ− δµνL
)

(5.8)

is conserved.
If we did not assume ξµ to be constant, then we would not have found ∆S to have been

given by a total derivative. However, by sufficient application of the product rule, (4.1)
would imply ξµ∂νT

ν
µ = 0 just the same.

6 Why Should Any of This Work?

Let’s take a moment to think carefully about why Noether’s theorem works. The key uncer-
tainty in all of Noether’s theorem is how we actually calculate this function Kµ. The most
obvious method, which is also the standard method, is to take S[Tα[φ]] and simply expand
to first order in α. But then

∫
dx∂µK

µ is nothing more than the first α derivative of S[Tα[φ]]
evaluated at α = 0. The on-shell variation of the action contracted on the particular vector
field corresponding to this transformation, namely the surface term of (5.1), is also precisely
the derivative of the action with respect to α after evaluating on-shell.

So, we might ask ourselves why Kµ is in any way distinct from ∂L
∂(∂µφ)

δφ when taken

on-shell. They represent the same quantity after all. And if they are the same, how is it
possible for Noeher’s theorem to tell us anything new? As a matter of fact, we could even
take ∂µT

µ
ν , assume the form T µν = ∂L

∂(∂µφ)
∂νφ − δµνL, and show that ∂µT

µ
ν = 0 using only

the Euler-Lagrange equations. No need to check variations. So, the statement ∂µT
µ
ν = 0 is

rendered trivially true on-shell.
The trick of the answer is actually to note that Noether’s theorem only holds on-shell,

but is also trivial on-shell, and that this is okay. The real key of Noether’s theorem is that,
despite only holding on-shell, it’s utility is entirely off-shell. Or, perhaps better say, its utility
is to tell us something about the shell.

We should think about things as follows. There is some configuration space for the fields
φ, for example the space C of Section 4. There is some subspace C̃ ⊆ C of configurations for
which the equations of motion are satisfied. Again related to previous notation, we would
say that ∀φs ∈ C̃, ιηδS[φs] = 0 ∀η ∈ X(C). In any case, we know that ∀φ ∈ C̃, ∂µJ

µ
∣∣
φ

= 0
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trivially. The power then comes when we don’t already know anything about the properties9

of C̃. We are always free to consider the value of ∂µJ
µ for any configuration in C. And, in

fact, we might define the subset CJ = {φ ∈ C|∂µJµ
∣∣
φ

= 0}. Noether’s theorem guarantees

that C̃ ⊆ CJ . Hence, a Noetherian conservation law tells us something about the on-shell
configuration space without relying directly on the equations of motion.

This is why application of Noether’s theorem do not always result in the conservation
laws being trivially true: we consider the value of ∂µJ

µ off-shell and demand that it be zero
as a constraint on what configurations could possibly be in C̃.

9We of course know that all elements of C̃ satisfy the equations of motion by definition, and of course
all properties of C̃ are therefore implied by the equations of motion. However, this does not mean all the
properties of C̃ are determinable by human means from the equations of motion alone.
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